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I. CHALLENGE

With the slowdown in technology scaling, domain-specific
hardware accelerators will play a major role in improving
the performance and energy-efficiency of computing systems.
In their Turing Lecture, John Hennessy and David Patterson
make a strong case for this trend, and predict that it will lead
to a new golden age of computer architecture [6]. However,
because the applications that run on these systems, such as
image classification, speech recognition, language modeling,
recommendation systems and scientific computing, are evolv-
ing rapidly with advances in machine learning, the accelerators
must be programmable, to avoid quickly becoming obsolete.
Such accelerators require a complete compiler system in order
to be useful, and this compiler must get updated as the
accelerator hardware evolves. The methodology for evolving
accelerators, and more importantly their compilers, is more
or less a completely manual process today, where large en-
gineering teams study the accelerator architecture in detail
and make the necessary modifications to the compiler and
the low-level libraries to leverage the accelerator. Because of
the large overhead of maintaining the entire software stack,
real-world usage of an accelerator lags far behind its design.
A key challenge, therefore, is to automate the co-design
of programmable accelerators and the compilers that map
applications to them, for fast-changing application domains.

II. OPPORTUNITY

We propose to tackle this challenge with CGRA accelerators
and compilers that adapt as the hardware evolves.

A. CGRA as an Accelerator Template

Our approach to solving this problem has been by using
coarse-grained reconfigurable arrays (CGRAs). A CGRA is
similar to an FPGA but with larger compute and memory units,
and word-level interconnect as shown in Fig. By tuning
the amount of configurability in these units and the intercon-
nect, we can create more specialized (closer to ASICs) or
more general-purpose accelerators (closer to FPGAs). Thus, a
CGRA provides a standard accelerator template for a compiler
to target. For example, a CGRA specialized for neural net-
works would look similar to a hand-designed neural network
accelerator like TPU [7] with compute units implementing
multiply-accumulate operations, and the interconnect support-
ing systolic connections between them. To map applications
to CGRAs, we have created a compiler shown in Fig.
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Fig. 1: A baseline CGRA architecture with processing element (PE)
tiles, memory (MEM) tiles and a statically-configured interconnect.
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Fig. 2: End-to-end hardware generation and software compilation
flow, starting with programs written in PEak, Lake, Canal, and Halide.

which takes applications written using a high-level library
such as Halide [10], lowers it to a dataflow graph based
intermediate representation (IR) called CorelR [3[], and then
maps, places and routes the graph onto the CGRA. Using
this compiler, we can accelerate a wide range of dense linear
algebra applications, such as those in image processing and
machine learning, on our CGRA and achieve 7 to 25x lower
energy than an FPGA.



B. Accelerator-Compiler Codesign

The key insight to our approach is that, unlike previous
work, our compiler automatically updates as the CGRA hard-
ware evolves. We achieved this by creating mini specification
languages—PEak for processing elements, Lake for memories,
and Canal for interconnects—for formally specifying the hard-
ware units, and then from those specifications automatically
deriving both the hardware implementation and the collateral
needed by the compiler as shown in Fig. 2] [1]].

For example, the compiler for PEak, which is our spec-
ification language for processing elements (PEs), generates
RTL Verilog, a functional model, and the rewrite rules the
application compiler needs to map applications, all from a
single PE specification. One of the primary enablers of PEak
is its ability to leverage advanced SMT (Satisfiability Modulo
Theories) solvers [2l]. The PEak compiler synthesizes a col-
lection of rewrite rules from a compiler IR (like CorelR) to a
PE ISA by finding an instruction in the ISA that is formally
equivalent to one or more instructions in the IR. Similarly,
from Lake specifications we generate memory hardware with
programmable addressing logic, and the collateral needed by
the compiler to map access patterns from applications to these
memories. We perform this mapping from access patterns to
configuration of address generators also using SMT solvers.
Finally, Canal takes a set of (potentially heterogeneous) PE
and memory cores and a specification of the interconnect.
It generates the hardware, the routing graph that place-and-
route tools need to map the dataflow graph onto the generated
hardware, and the configuration bitstream that implements the
routing result on the hardware, from the specification. As a
result, a change in the design of any component automatically
propagates through the flow to affect dependent components
without manual intervention, and the compiler continually
updates with the hardware.

C. Large-Scale Automated Design Space Exploration

Architects often explore many alternatives when designing
an accelerator to achieve the best performance, power and area
trade-offs. They analyze application kernels to find common
sequences of operations that they can make faster or more
energy-efficient. This is often done incrementally by propos-
ing a design change, implementing it, then reevaluating the
efficiency. A major impediment to design space exploration
is implementing the software changes needed to compile the
application to the new accelerator. The techniques we describe
make it easy to modify an accelerator using PEak, Lake
and Canal, and automatically derive a code generator so that
the application can be compiled. This enables quick iterative
design. Using such hardware-compiler codesign approaches,
there is an opportunity to automate large-scale design space
exploration (DSE) of accelerator architectures.

As a step in this direction, we are creating a PE DSE
framework, that analyzes application graphs using subgraph
mining [4] and maximal independent set analysis [5] and
generates an ordered list of frequent subgraphs. It then uses
subgraph merging [9]] to merge several frequent subgraphs to

generate a candidate PE graph, which it automatically converts
into a PEak specification. From this, the PEak compiler gen-
erates both PE hardware and the rewrite rules required by the
application mapper as described before. Finally, it synthesizes
the CGRA with these specialized PEs and evaluates it using
the mapping produced by the compiler. Using this method, we
show that optimizing the PE for image processing reduces area
by 29.6% to 32.5% and energy by 44.5% to 65.25%. Building
on this initial work, given a set of applications in a domain, we
hope to automatically produce an accelerator specialized for
that domain. Finally, reinforcement learning techniques like
[8]], in conjunction with such a system, are very promising for
performing fast DSE.

III. TIMELINESS

With the slowdown of Moore’s law, hardware specialization
is the most promising technique for continued improvement
of scientific computing systems. The lack of a structured
approach for evolving the software stack, as the underlying
hardware becomes more specialized, has been one of the
biggest impediments to its adoption. Our approach provides
a systematic way of thinking about accelerators as specialized
CGRAs and employs a combination of new programming
languages and formal methods to automatically generate the
accelerator hardware and its compiler from a single source
of truth. Furthermore, it enables the creation of DSE frame-
works that automatically generate accelerator architectures that
approach the efficiencies of hand-design ones, with a signifi-
cantly lower design effort. This has the potential to massively
improve productivity of hardware-software engineering teams
and enable quicker customization and deployment of complex
accelerator-rich computing systems.
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