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Abstract
Domain-specific accelerators are used in various com-

puting systems ranging from edge devices to data centers.
Coarse-grained reconfigurable arrays (CGRAs) represent
an architectural midpoint between the flexibility of an
FPGA and the efficiency of an ASIC and are a promising
candidate for servicing multi-tasked workloads within an
application domain. Unfortunately, scheduling multiple
tasks onto a CGRA is challenging. CGRAs lack abstrac-
tions that capture hardware resources, leaving workload
schedulers unable to reason about performance, energy,
and utilization for different schedules. This work first pro-
poses a CGRA architecture that can flexibly partition key
resources, including the global buffer memory capacity,
the global buffer memory bandwidth, and the compute re-
sources. Partitioned resources serve as hardware abstrac-
tions that decouple compilation and resource allocation.
The compiler uses these abstractions for coarse-grained
resource mapping, and the scheduler uses them for flexi-
ble resource allocation at run time. We then propose two
hardware mechanisms to support multi-task execution.
A flexible-shape execution region increases the overall
resource utilization by mapping multiple tasks with dif-
ferent resource requirements. Dynamic partial reconfig-
uration (DPR) enables a CGRA to update the hardware
configuration as the scheduler makes decisions rapidly.
We show that our abstraction can help automatic and
efficient scheduling of multi-tasked workloads onto our
target CGRA with high utilization, resulting in 1.05x–
1.24x higher throughput and a 23–28% lower latency in a
multi-tasked cloud workload and 60.8% reduced latency
in an autonomous system workload when compared to a
baseline CGRA running single tasks at a time.

1. Introduction
Domain-specific accelerators have gained growing inter-
est in recent years as they provide improved performance
and energy efficiency over general-purpose processors.
Application-specific integrated circuits (ASICs) [8, 18,
21] show the highest performance and efficiency as they

are specialized for target applications such as image pro-
cessing or machine learning (ML). However, the ASIC
design process can span multiple years, and fixed-function
accelerators quickly become obsolete as applications con-
tinue to evolve. Some works deploy applications on FP-
GAs [12, 16, 17]. FPGAs enable reconfiguration of the
underlying hardware and can accelerate diverse work-
loads, but their bit-level flexibility incurs high area and
energy overheads. Coarse-grained reconfigurable arrays
(CGRAs) are promising architectures that lie between
ASICs and FPGAs. A CGRA has arithmetic units and a
routing system that are configurable in word-level gran-
ularity, providing flexibility at a lower overhead than
a FPGA. With its unique advantages, a CGRA can be
widely adopted in domains with high performance, power,
and flexibility requirements.

As hardware accelerators are deployed in various sce-
narios, the demand for multi-task execution support on
hardware is growing. For example, many vendors [21, 13]
offer INFerence-as-a-Service, where multiple tenants
share the same hardware to run inference tasks. Also, an
autonomous system handles concurrent tasks to process
various types of data from numerous sensors. Some works
have explored multi-task execution support in ASICs and
FPGAs. PREMA [11] and Planaria [14] propose a sys-
tolic array that supports multi-tenancy by temporal and
spatial multiplexing, respectively. [35, 29, 34] propose an
FPGA virtualization framework with multi-tenancy sup-
port. However, multi-task execution support on CGRAs
has not been explored much thus far. A noteworthy ex-
ception is ChordMap [27] which schedules multiple tasks
captured in synchronous data flow graphs onto a CGRA.
However, it assumes that all tasks are known a priori,
whereas in a multi-tenant cloud or multi-tasked edge work-
load scenario, tasks may arrive dynamically and require
schedulers to react to maximize utilization.

Unfortunately, scheduling multiple tasks onto a CGRA
is challenging as it lacks abstractions capturing hardware
resources. In this paper, we propose hardware abstrac-
tions of a CGRA by partitioning key hardware resources.
Both compilers and schedulers can exploit the abstrac-
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tions to reason about performance, energy, and utilization.
We also develop hardware mechanisms that allow fast and
flexible multi-task execution on a CGRA, which sched-
ulers exploit to improve hardware utilization. We evaluate
our CGRA with two different multi-tasked workload sce-
narios to show the potential. Our key contributions are:
• 1⃝ We propose a CGRA architecture that can flexibly

re-partition key resources, including the Global Buffer
(GLB) memory capacity, the GLB memory bandwidth,
and the compute resources. Specifically, we partition
the GLB into GLB-slices and the tile array into array-
slices, which serve as hardware abstractions. The com-
piler uses these abstractions for coarse-grain resource
mapping, while the scheduler uses them for flexible
resource allocation.

• 2⃝ We propose two hardware mechanisms to support
multi-task execution on the CGRA. First, the CGRA
can form a flexible-shape execution region at run time.
It improves resource utilization by enabling a scheduler
to allocate GLB-slices and array-slices flexibly. Sec-
ond, we propose a fast-DPR method to reconfigure the
underlying hardware rapidly according to scheduler de-
cisions. It also supports run time relocation of a task to
any available array-slice without software intervention.

• 3⃝ We quantify the benefits of our proposed mecha-
nisms on two different examples. Our CGRA with
flexible execution regions and fast-DPR shows 1.05x–
1.24x higher throughput and 23–28% lower latency in a
cloud system scenario and 60.8% reduced latency in an
autonomous system scenario than the baseline CGRA.

2. Architectural Support for Multi-Task Exe-
cution on a CGRA

In this section, we explore the architectural support
needed for multi-task execution on a CGRA. Section 2.1
first introduces a baseline CGRA architecture with com-
mon features present in many reconfigurable accelera-
tors [7, 32, 15, 6, 1, 28]. Section 2.2 then introduces how
we abstract the hardware resources in the CGRA for the
scheduler by partitioning the global buffer (GLB) and
the tile array into GLB-slices and array-slices, respec-
tively. We further develop hardware mechanisms that
enable multi-task execution on top of these abstractions
(Section 2.3), including flexible-shape execution regions
and dynamic partial reconfiguration (DPR).

2.1. Baseline CGRA Architecture

Our baseline CGRA consists of a tile array with process-
ing element (PE) and memory (MEM) tiles and a global
buffer (GLB) (Figure 1). We leverage the same hardware
configuration used in the Amber SoC [7]. The CGRA has
32x16 tiles with 384 PE tiles and 128 MEM tiles, and tiles
communicate through a statically configured mesh inter-

Figure 1: Baseline CGRA block diagram corresponding to [23].

App. Task Ver. Tpt.
Array
slices

GLB
slices

ResNet-18

conv2_x
a 64 2 7
b 256 6 7

conv3_x
a 64 2 4
b 256 6 4

conv4_x
a 64 2 6
b 256 6 6

conv5_x
a 64 2 20
b 128 6 20

MobileNet

conv_dw
_pw_2_x

1 a 52 2 4
b 208 5 4

conv_dw
_pw_3_x

a 52 2 4
b 104 3 4

conv_dw
_pw_4_x

a 52 2 4
b 104 3 4

Camera
pipeline

Camera
pipeline

a 3 4 4
b 12 6 14

Harris Harris
a 1 2 4
b 2 4 7
c 4 7 14

Table 1: Variants of tasks with different resource usage and
throughput. ResNet-18 and MobileNet consist of several lay-
ers, and one or more layers form a single task. The unit of
throughput (Tpt.) for ResNet-18 and MobileNet is MACs/cycle
and for camera pipeline and harris it is pixels/cycle.

connect. Each node in the interconnect has five incoming
and five outgoing tracks in each direction, and switch
boxes route data from incoming tracks to outgoing tracks.
Connection boxes select data from incoming tracks and
route it to the PE or MEM tile cores. The GLB consists of
32 banks, with each bank containing 128 KB of SRAM.
Each GLB bank directly communicates with the tile array
through IO tiles located at the top of the array.

2.2. A Scheduler-Visible Abstraction of Hardware Re-
sources

We focus on three key hardware resources within the
CGRA (Figure 1): the GLB memory capacity, the GLB
memory bandwidth, and the compute resources within
the tile array. When a task is compiled in the Amber

1A conv_dw_pw refers to a merged task of a depth-wise convolu-
tional layer and a point-wise convolutional layer.
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(a) Baseline (b) Fixed-sized execution region

(c) Variably sized execution region (d) Flexible-shape execution region

Figure 2: Resource allocation in the baseline CGRA and a CGRA with three different execution regions. Resources colored grey
represent the blocks occupied by a current-running task, and those colored red represent blocks occupied by a next-running task.

toolchain [23], a compiler converts it into a dataflow
graph where each node and edge represents a hardware
resource and communication, respectively. Specifically,
GLB banks are used for medium-sized storage and com-
munication to the host and tile array, and PE and MEM
tiles are used for computation and as small scratchpads.
The dataflow graph can derive the usage of memory capac-
ity, memory bandwidth, compute units, and throughput.

We abstract the hardware resources by partitioning the
GLB and tile array into homogeneous GLB-slices and
array-slices, respectively. For example, we can abstract
each GLB bank within our CGRA as a GLB-slice and
every set of four columns in the tile array (48 PE tiles and
16 MEM tiles) as an array-slice. This abstraction serves
as a middle layer that decouples offline bitstream genera-
tion by a compiler and run time resource allocation by a
scheduler. During compilation, we represent the resource
usage of each task using these abstracted GLB-slices and
array-slices. For instance, a conv2_x layer in [19] utilizes
750KB of GLB memory capacity, 17.3MB/s of memory
bandwidth, 80 PE tiles, and 17 MEM tiles and achieves
64 OPs/cycle throughput at a 500MHz clock frequency.
The task is abstracted as seven GLB-slices and two array-
slices in coarse-grain resource slice usage. It is possible to
produce variants of the same task with different resource
usage and throughput by tweaking the compiler. For ex-
ample, increasing the unroll factor of the same task by
four would achieve 4x throughput (256 OPs/cycle) with
288 PE tiles, 33 MEM tiles, and the same GLB mem-

ory capacity and bandwidth, which is abstracted as seven
GLB-slices and six array-slices. Our approach allows
for pre-computation of bitstreams that support different
resource usage and throughput to be cached in on-chip
storage to support fast dynamic partial reconfiguration, as
discussed later. Table 1 summarizes the resource usage
and throughput for several different variants of tasks. At
run time, a scheduler leverages the hardware slice abstrac-
tion to decide which variant of tasks to choose, which
resources to allocate, and when to execute.

2.3. Hardware Mechanisms

Flexible-Shape Execution Regions. To manage multiple
tasks that are concurrently running, we need a way to
monitor hardware resources and the status of tasks, that
are build upon the abstractions described above. We in-
troduce an execution region, a sub-region of the CGRA
on which a single task is mapped and executed. An ex-
ecution region consists of one or more GLB-slices and
array-slices. The flexibility to form different sizes and
shapes of execution regions gives the scheduler a sim-
plified and quantized view of hardware resources while
providing enough information to allocate resources to
each task to maximize resource utilization in multi-tasked
workloads.

Figure 2 compares different mechanisms to form an
execution region and how they affect resource allocation.
The blocks colored in gray represent resources occupied
by the currently running task, and those colored in red rep-
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resent resources allocated to the next-running task. The
baseline CGRA (Figure 2a) is unaware of our hardware
slice abstraction, and the entire CGRA serves as a single
large execution region. Since an existing task is already
mapped onto the CGRA, subsequent tasks are always
forced to wait until the previous tasks finish and release
the single execution region.

The simplest mechanism to form an execution region
is only to support fixed-sized regions. For example, all
execution regions in Figure 2b consist of two GLB-slices
and one array-slice. Fixed-sized regions are not optimal.
Since each task must fit within the fixed-sized execution
region, the largest task with the highest resource usage
determines the size. On the other hand, when there are
several available execution regions, a task can be unrolled
and mapped in parallel to achieve higher throughput (e.g.,
the next-running task is unrolled by three in Figure 2b).
This method does not require much architectural change,
and the implementation of a scheduling algorithm can
be straightforward given the assumption that all target
tasks fit within an execution region. However, although
unrolling increases throughput, optimization across the
unrolled dimension can be challenging to support.

Another method is to support variably sized execution
regions by merging multiple fixed-sized regions. We de-
fine the unit size of a region as in the fixed-sized region
case, but we can merge multiple unit regions to form a
larger execution region. For example, in Figure 2c, three
unit-sized regions are merged to execute the next-running
task (colored in red). The benefit of variably sized execu-
tion regions is to allow compilation optimization across
the unrolled dimension. For example, a camera pipeline
task with 3 pixels/cycle throughput uses four array-slices
(Table 1). Naively unrolling it by four achieves 12 pix-
els/cycle throughput using 16 array-slices. However, the
compiler can optimize to time-multiplex PE tiles and
achieve 12 pixels/cycle throughput with only six array-
slices. Support for a variably sized region still allows for
the pre-computation of bitstreams for multiple variants of
tasks with different resource usage and throughput. How-
ever, this approach may still suffer from low resource
utilization since the ratio of GLB-slices and array-slices
within an execution region always remains the same.

Therefore, we propose flexible-shape execution regions
in which GLB-slices and array-slices are no longer cou-
pled. Decoupling of GLB-slices and array-slices enables
finer-grained resource allocation. For example, Figure 2d
shows how an execution region can be allocated any
number of GLB-slices and array-slices, forming a non-
rectangular shape, with remaining array-slices and GLB-
slices available to be used by other tasks. The support
for flexible-shape execution regions improves resource
utilization, especially for multi-tasked workloads where
memory-intensive and compute-intensive tasks are mixed.

However, it may require additional communication be-
tween the GLB-slices and the array-slices. In this work,
we limit the placement of GLB-slices and array-slices
within an execution region to be contiguous to simplify
our study. Design space exploration on flexible placement
support and the required network remains as future work.
Section 3.1 describes the benefits of these mechanisms in
more detail with a cloud system example.

Dynamic Partial Reconfiguration. Dynamic partial re-
configuration (DPR) is a mechanism to update the hard-
ware configuration in reconfigurable architectures. We
propose fast-DPR following the DPR mechanism pro-
posed in Amber SoC [7], but with added features to
exploit hardware abstractions. In Amber, every other
GLB bank stores the configuration bitstreams and inde-
pendently streams configuration into two columns of the
tile array. Also, clocks and configuration signals are dis-
tributed down each column together, enabling reconfigur-
ing the tile array at high clock frequency without pipeline
stages. In our CGRA, we also reuse GLB blocks to store
and stream bitstreams to the tile array and follow the same
clock distribution network. Unlike Amber, however, one
GLB bank streams configuration into one array-slice (in
turn, four columns of the tile array) as an array-slice is
the minimum unit of execution regions.

We added a feature to relocate bitstreams at run time to
exploit hardware abstractions further. In Amber, the com-
piler generates region-aware bitstreams; the bitstreams
for one region cannot be reused in different regions even
though the two regions are homogeneous. This limitation
comes from the fact that the address of each configuration
register in different columns has a distinct column #id. On
the other hand, our compiler generates region-agnostic
bitstreams by assuming that the task is always mapped to
the leftmost region. We also added a register indicating
the destination region of DPR to GLB banks. When the
host processor triggers DPR, GLB banks read the register
and stream bitstreams to the target region via the network
between the GLB and the tile array. With this bitstream
relocation feature, a user can pre-load bitstreams of the
next task to the GLB in advance and rapidly map it to any
next available region just by writing to a single register.

3. Evaluation

We evaluate the benefits of multi-task execution support
under two different workload scenarios. In a cloud sys-
tem example scenario (Section 3.1), our CGRA with
flexible-shape execution regions enables 1.05x-1.24x
higher throughput and 23-28% lower normalized turn-
around time (NTAT) over the baseline CGRA. In an au-
tonomous system example scenario (Section 3.2), our
CGRA enables 60.8% reduced total latency.
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(a) Cloud system example

(b) Autonomous system example

Figure 3: (a) Cloud system example scenario with four tenants
submitting requests to the CGRA. Each tenant is assigned with
a task from MobileNet, ResNet-18, camera pipeline, and Harris,
respectively. (b) Autonomous system example with tasks that
may be triggered under conditions.

3.1. Example 1: Cloud System

Overview. In this example, we construct a synthetic cloud
computing scenario that models real-world examples in
which the CGRA serves application requests from multi-
ple users (Figure 3a). We construct the multi-tasked work-
load using kernels from machine learning (ML) and image
processing domains, including ResNet-18 [19] and Mo-
bileNet [20] from the ML domain, and camera pipeline
and Harris corner detector from the image processing do-
main. Table 1 summarizes the benchmark tasks and their
resource requirements.

To generate the multi-tasked workload, we assume four
tenants share the CGRA and are assigned one of the four
target applications. Each tenant sends a request to the
CGRA following a Poisson distribution. Whenever a new
task arrives, or an existing task finishes, the scheduler
is triggered and runs a greedy algorithm to schedule the
next available task. The scheduler checks if dependencies
are met before scheduling the task (e.g., in ResNet-18,
conv2_x depends on conv1_x). If there is more than one
version of a task that can be mapped onto the available
resources, the greedy scheduler always chooses the one
with the highest throughput.
Metrics. We measure Normalized Turn-Around Time
and throughput to compare the baseline CGRA and the
three partitioning mechanisms described in Section 2.3.

(a) NTAT

(b) Throughput

Figure 4: Evaluation in a cloud system example. (a) NTAT and
(b) throughput for each task with fixed-sized, variably sized, and
flexible-shape resource partitioning, normalized to the baseline
CGRA. Flexible-shape partitioning decreases NTAT by 23-28%
and increases throughput by 1.05x-1.24x.

Turn-Around Time (TAT) is the interval from the time of
request to submit a task to the time of task completion.
Normalized Turn-Around Time (NTAT) is the ratio of the
TAT to the execution time, which represents the relative
delay of a task (Equation (1) - (2)). We calculate NTAT
for each request and the arithmetic average for each appli-
cation. We also measure the average throughput for each
application to demonstrate the performance benefit.

TAT = wait_time + execution_time (1)
NTAT = TAT / execution_time (2)

Results. Figure 4 illustrates the relative improvements
in NTAT and throughput for flexible-shape execution re-
gions compared to fixed- and variably-sized execution
regions. Even with a simple greedy scheduling algo-
rithm, we achieve 23–28% decreased NTAT and 1.05x–
1.24x higher throughput. Note that we only pre-compile
each task to two different variants in this case study (Ta-
ble 1), and a scheduler greedily selects the one with higher
throughput if resources are available. Co-optimizing com-
pilation and scheduling policy may improve NTAT and
throughput further, which remains future work.

3.2. Example 2: Autonomous System

Overview. In this case study, we construct a synthetic
edge system scenario modeling the real world in which
multiple tasks from image processing and ML domains ex-
ecute in parallel and can dynamically trigger. Specifically,
we develop an autonomous system scenario as described
in Figure 3b following a methodology used in [30]. 2 The
system takes a RAW image in Bayer encoding format
(RGGB) from sensors at 30 fps and first runs a camera

2We also changed the tasks to simplify the example.
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Figure 5: The average latency of an autonomous system
example with different execution regions. The values are nor-
malized to the result of the baseline. A red bar indicates the
time spent for reconfiguration, and a blue bar indicates the
sum of wait time and execution time. To show the benefit of
fast-DPR (Section 2.3), we assume the baseline CGRA uses
AXI4-Lite interface for DPR, while others use fast-DPR.

pipeline task on the CGRA to convert to an RGB image.
Once the CGRA generates an RGB image, the system
runs object detection and dynamically decides on the next
tasks. 3 When an event happens (e.g., detection of a spe-
cific background), it processes the event and executes the
corresponding tasks (e.g., depth estimation). Except for a
camera pipeline that runs every frame, we set the period
from one event to the next same event to follow a uniform
random distribution between 3–7 frames.
Results. We evaluate the benefit of hardware resource
partitioning and fast DPR by comparing our proposed
CGRA to the baseline CGRA with AXI4-Lite-based DPR.
Specifically, the baseline CGRA maps only one task at
a time. When more than one event occurs, the base-
line handles each task one by one and reconfigures using
sequential AXI4-Lite configuration transactions. In the
proposed CGRA with multi-task execution support, we ex-
ploit flexible-shape resource partitioning to concurrently
run more than one task on the CGRA when possible. Also,
we use the parallel and high-frequency DPR mechanisms
in Section 2.3 to configure bitstreams. We compute the
arithmetic average of the latency over all frames. As de-
scribed in Figure 5, our techniques enable a 60.8% latency
reduction compared to the baseline. With fast DPR, re-
configuration takes less than 5% of the total latency, an
appreciable reduction from 14.4% in the baseline.

4. Related Work

As Deep Neural Networks (DNNs) are widely used in vari-
ous domains, DNN accelerators [18, 17, 8, 9, 10, 25] have
emerged and been deployed in the cloud system [21, 13].
To that end, many prior works have explored multi-
tenancy support on DNN accelerators in cloud systems.

3This work assumes that object detection is executed in another
hardware in the system (e.g. GPU or ASIC).

Multi-task execution support is also studied in FPGAs
targeting both cloud and edge computing. However, a non-
negligible portion of FPGA resources is typically reserved
for controlling multi-task execution, ultimately decreas-
ing the available computing resources. ChordMap [27]
explores the automated mapping of multi-tasked applica-
tions onto a CGRA, but it is limited to mapping multiple
tasks within streaming applications with all tasks known
a priori. Our work proposes hardware abstractions and
mechanisms, which both compilers and schedulers can
exploit and co-optimize to improve resource utilization in
both cloud and edge systems.
Multi-Task Execution on DNN Accelerators. Some
DNN accelerators service multi-DNN tasks at the soft-
ware level. AI-MT [2] and Layerweaver [31] propose a
scheduling policy to mix compute- and memory-intensive
tasks to increase hardware utilization. PREMA [11] im-
plements preemptible NPUs to support multi-tenancy
via temporal multiplexing. Many works add flexibil-
ity to an accelerator to accommodate multiple DNN
tasks. Planaria [14] introduces a flexible systolic array
with dynamic architecture fission to map multiple DNN
tasks. [26] suggests a multi-directional network to sup-
port up to four DNN tasks with different dataflow. Other
works [24, 3] explore a computing system with multiple
DNN accelerators with different hardware characteristics.
While these works only support DNN workloads, our
work can support any applications that can be mapped
onto a CGRA.
Multi-Task Execution on FPGAs. In FPGAs, multi-task
execution support has been explored in the context of
virtualization. Some works divide an FPGA into a static
region, a shell, which serves as glue logic between the
host and the FPGA, and a dynamic region, a role, which
handles the computation of tasks. [4, 5, 33] partition
a physical FPGA into several fixed-size virtual blocks
and share them across multiple tasks. AmorphOS [22]
presents a hardware abstraction of an FPGA, Morphlet,
which dynamically alters its size based on resource re-
quirements. ViTAL [35] provides a full-stack framework
to run multiple tasks with different sizes on homogeneous
regions. [34] supports running multi-DNN tasks on an
FPGA by dividing hardware resources into multiple PE
cores and spatially multiplexing them, while [30] eval-
uates the benefits of temporal multiplexing of FPGAs
using DPR for vision applications on embedded devices.
While these works only target scenarios where underlying
applications change infrequently because of long reconfig-
uration time of FPGAs, our work can support both cloud
systems and real-time edge systems due to rapid DPR.

5. Conclusion
Multi-task execution support on accelerators is becoming
increasingly relevant in both cloud and edge systems and
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has the potential to improve performance through bet-
ter hardware utilization. This work proposes abstracting
hardware resources within a CGRA into coarser-grained
units with which a workload scheduler can quickly make
decisions. Based on the proposed abstraction, we develop
hardware mechanisms to support multi-task execution
through flexible-shape hardware partitioning and high-
throughput dynamic partial reconfiguration. Our evalua-
tions modeling both a cloud and an edge system scenario
suggest that the abstraction and hardware mechanisms can
enable automatic schedulers to achieve high performance
in multi-tasked workloads on future CGRAs.
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